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Depinning and creep in Josephson junction arrays in weak magnetic fields
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Based on resistively shunted junction dynamics, we have numerically studied the depinning transition and
thermally activated creep motion of vortices in two-dimensional Josephson junction arrays exposed to a weak
external field with the filling factor f=1/25. Whether the bond disorder is introduced into the system or not, a
continuous depinning transition is found at zero temperature. By means of scaling analysis of the current-
voltage characteristics, a non-Arrhenius creep law is observed at finite temperatures, with the existence of two
universality classes depending on the strength of the bond disorder. The effects of the disorder on the critical

current and critical exponents are also discussed.
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I. INTRODUCTION

The dynamics of elastic systems is closely related to a
variety of systems such as vortex lattices in type II
superconductors,’> charge-density waves in disordered
systems,>> Wigner crystals in a two-dimensional (2D) elec-
tron plasma,6 domain walls in a magnetic film,” as well as
driven interfaces in random media.® A fundamental challenge
is how these systems respond to an external driving force,
such as current-induced Lorentz force for vortices, electric
field for charge-density waves, or magnetic field for domain
walls. In the case of current-driven vortex systems, the com-
petition between the repulsive vortex-vortex interaction and
the attractive pinning potential produces many interesting
dynamic  properties, which have been explored
extensively.>%-18 Recently, the depinning and creep motion
of flux lines in three-dimensional (3D) systems have been
investigated numerically based on overdamped London-
Langevin model.'®

Josephson junction arrays (JJAs) provide a well-
controlled model for vortices moving in a periodic or random
pinning environment in two dimensions. One can artificially
modulate the coupling strength of the Josephson junctions as
well as the external magnetic field. As we know, the discrete
lattice structure induces an effective pinning potential which
confines the motion of vortices. The complicated phase tran-
sitions of equilibrium and dynamic behaviors of this model
have been studied considerably.'*3° Theoretically, there have
been some researches on the depinning and creep of vortices
in 2D JJAs (Refs. 15 and 19-21); to the best of our knowl-
edge, most of them were devoted to the depinning currents,
and systematic studies on the nature of depinning transition
and creeping motion are still lacking.

In this paper, based on resistively shunted junction (RSJ)
dynamics, we will present a physical picture of depinning at
zero temperature and creep at finite temperatures in 2D JJAs
subjected to a weak external field with the magnetic-flux
density f=1/25. Besides the critical current, the critical ex-
ponents are calculated, with the hope that these results can
offer useful insights to further understand the behaviors of
vortices. The rest of this paper is organized as follows. Sec-
tion II describes the model and dynamic method. Section III
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shows our main results, where some discussions are also
carried out. Finally, a short summary is given.

II. MODEL AND DYNAMIC METHOD

The Hamiltonian of 2D JJAs in an external magnetic field
takes the following form:

H=- 2 Jnm COS(¢n_¢m_Anm)v (1)

(nm)

where the induced magnetic field generated by currents is
negligible, ¢, is the phase of the superconducting wave func-
tion on site n, the symbol X,y denotes the summation over
nearest neighbors m of n, J,,, is the strength of the Josephson
coupling between nearest-neighboring sites, and A,
=(2¢/h)[)'A-dl with A as the magnetic vector of a field
B=V X A perpendicular to the 2D JJAs. The summation of
A,,, around any unit cell is 2. A,,,=27f, with f=Ba?/ ¢,
(a is the array lattice constant and ¢y=h/2e is the magnetic-
flux quantum) as the density of magnetic flux per unit cell.
Just as mentioned above, f is chosen as 1/25 in our simula-
tions. The random pinning potential is introduced into the
bond coupling strength J,,,=Jy(1 +pe,,,), where g,,,’s are in-
dependently Gaussian distributed with zero mean and unit
variance.!®3! The well-known Kirkpatrick-Stoll random
number generator is used for noise generation.!® Here we
focus on four values of p representing different levels of
disorder: p=0, 0.05, 0.1, and 0.3. Note that in Ref. 23 for
strongly disordered Josephson junction arrays, the value of
strong disorder is equivalent to p=1/4y3=0.144 in the
present paper.

In our simulations, the RSJ dynamics is adopted, which

can be written as'®
oh . . 2e¢ dH
= =2 ST, 2
re > (Bimdn) == L= 2T, @)

where 1, is the external current at site n which only exists at
the boundary sites, 1", is the thermal noise current with
<rnm(t)>=0’ and <an(t)rkl(0)>=ZGkBTﬁ(t)(5nk5ml_6n15mk)a
where the unit of temperature 7 is J,/kg. A uniform external
current is injected into the system in the x direction. In order
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to maintain the current’? and ensure the periodic interactions
between vortices,?* the fluctuating twist boundary condition
(FTBC) is used. Specifically, one introduces a global “twist”
variable A,(#)[A,(7)] to track the average phase drop per link
in the x(y) direction. Let 6,= ¢, +r,-A be the excess phase
at site n with A=(A,A)) as the fluctuating twist variable.
The gauge-invariant phase difference is replaced with V¥,
=6,-6,—A,,—(r,—r,)-A, with 6, as periodic in both x and
y directions. To achieve a given current i through the sample,
i.e., the sum of the normal current, the supercurrent, and the
thermal noise current yields the desired total current, we
require

1

8- 2 [+ pey,)sin(¥,,) + myl=ic ()

(nm)x

where 2,,, denotes the summation over all links in the x
direction. Equation (3) defines the dynamics of A,.

The external current i=I/I., and thermal noise current
D=1 pm! Lo are in units of I.o=2eJy/#. The unit of the time
is ofi/2el.,. The voltage exists only in the x direction

V=-LA_ in units of I,/ 0. Obviously, the voltage relies on
the system size L. Therefore, we measure the mean voltage
per junction v=V/L. For convenience, units are taken as
2e=Jy=h=0=kz=1 in the following.

The above equations can be solved by a second-order
Runge-Kutta method with time step Ar=0.05. The system
size is L=100 over which the finite-size effect can be ne-
glected. The results below are based on one realization of the
disorder. For the present L=100 sample, a good self-
averaging effect is expected. This is confirmed in a few ad-
ditional simulations with different realizations of disorder,
where the general results are not changed.

III. RESULTS AND DISCUSSIONS

In all simulations the ground-state phase configurations of
the vortex system without disorder are selected as the initial
state. To obtain the ground state, we begin to perform the
simulations from high temperatures with random initial
phase configurations and then gradually cool down the sys-
tem to zero temperature. As a result, it is found that the
ground state is a tilted squarelike vortex lattice, consistent
with previous study.?! In order to show the translational or-
der of the vortex system, we calculate the vortex structure
factor in the reciprocal space, which is defined as

1 2
S(k) = Ez b(rjexp(zk -1))| , (4)
J

where b(r) is the vortex number through the unit cell at site
r with 2 (V,,,)=27]b(r)—f] and z is the unit imaginary
number. As shown in panel (a) of Fig. 1 with brightness
points, the vortex structure factor for p=0 at 7=0 has peri-
odic Bragg peaks, characteristic of the long-range order. In
the presence of bond disorder, a ringlike pattern is observed
in the structure factor for all disorders we studied. A structure
factor for p=0.1 is exhibited in panel (b) of Fig. 1, indicating
a disordered state. The vortex structure factors for p=0.05
and 0.3 (not shown here) are similar to that for p=0.1.
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(b)

FIG. 1. Vortex structure factors at 7=0 for p=0 (a) and p=0.1
(b) in a grayscale.

We proceed to the study of depinning transition. Figure 2
presents the log(v)-log(i—i,y) curves at T=0 for all the p’s
considered. For each case, a continuous depinning transition
is found, which can be described as v ~ (i—i.,)?.>** The cor-
responding critical currents i,’s and depinning exponents
B’s are estimated and illustrated in Fig. 2. Unexpectedly, the
critical current varies nonmonotonously as the strength of the
bond disorder builds up. The growing depinning exponent
with the rise of disorder indicates that the dependence of the
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FIG. 2. Log(v)-log(i—i,y) plots at T=0 for (a) p=0, (b) p
=0.05, (c) p=0.1, and (d) p=0.3. The real lines are fitting curves.
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FIG. 3. v-i curves at finite temperatures for (a) p=0, (b) p
=0.05, (¢) p=0.1, and (d) p=0.3.

voltage on the external driving current becomes stronger. In-
terestingly, in the pure system, the obtained 8=0.51(1) is in
accord with that in the single-particle model within numeri-
cal errors,’ which indicates that all vortices behave like an
isolated vortex in the periodic potential.

Next, we discuss the creep motion of vortices at finite
temperatures. As displayed in Fig. 3, the v-i curves for T
>0 are rounded since the vortices may overcome the local
energy barriers via the thermal activation energy. As ex-
pected, the creep motion speeds up with increasing tempera-
ture. To study the thermal rounding of the depinning transi-
tion quantitatively, in the mean-field theory Fisher® first
predicted a scaling relation among the velocity, the driving
force, and the temperature to analyze charge-density waves.
Then the relation was successfully mapped into the random-
field Ising model*>3® and flux lines in type II
superconductors.'® In terms of the current-driven vortex sys-
tems, the dynamic scaling relation is cast into the following
form:

o(T,i) = TG T VPili o, - 1)], (5)

with the scaling function G(x— 0)=const. Namely, right at
the critical current i=i,, the dependence of the voltage v on
the temperature T scales as v(T,i=i ) ~ T"'° with the critical
exponent 1/6, which provides a method to determine the
critical current i ..

The log-log v-T curves are plotted in Fig. 4 at three cur-
rents around i, for p=0, 0.05, 0.1, and 0.3. As we can see,
the curves are concave for i >, and convex for i <i,, as the
temperature decreases. It is expected that, only at i=i,, the
v-T curve in a log-log scale exhibits the best power-law
form. Similar to the process in Ref. 26, the critical current
can also be evaluated by a quadratic interpolation method.
The obtained i, ’s are displayed in Fig. 4, consistent with
those extracted from the depinning transition at 7=0 within
numerical errors. The temperature dependence of voltage at
these critical currents is also shown in Fig. 4 with dashed
lines. The slopes of these curves yield 1/6=0.240(6),
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FIG. 4. Log-log plots of v-T at three currents around i, for (a)
p=0, (b) p=0.05, (¢) p=0.1, and (d) p=0.3. The dashed lines are at
the critical currents. Lines are guides for the eyes.

0.395(6), 0.764(8), and 0.851(7), which are also listed in Fig.
4. It is found that the critical exponent 1/6 increases as the
disorder goes up, indicating that the dependence of the volt-
age on the temperature at the critical current becomes stron-
ger with the enhancement of disorder.

For each system studied, with & and i, at hand, we care-
fully adjust the depinning exponent S until a very good col-
lapse is achieved according to the scaling relation [Eq. (5)].
The scaling curves for four p’s are presented in Fig. 5. The
estimated values of B are 0.50(1), 0.79(2), 1.28(3), and
1.42(3), in agreement with those derived from the depinning
transition within numerical errors. It is worth noting that the
values of the combined exponent 85=2.08(10), 2.00(5) for
p=0 and 0.05 deviate from unity, as well as B6=1.66(5),
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FIG. 5. Scaling curves of the data in Fig. 3 for (a) p=0, (b) p
=0.05, (c) p=0.1, and (d) p=0.3.
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FIG. 6. Log(v) vs 1/T curves for (a) p=0, i=0.115, (b) p
=0.05, i=0.095, (¢) p=0.1, i=0.1, and (d) p=0.3, i=0.16. For each
case, the current is smaller than the corresponding critical current.
Lines are guides for the eyes.

1.68(5) for p=0.1 and 0.3. A well-known creep law is the
Arrhenius type, in which the activation rate of vortices is
proportional to exp[—U(i)/T], with U(i) as the activation en-
ergy. However, all the scaling curves in Fig. 5 cannot be
fitted by exp(—|x|#%) with each B34, illustrating that the creep
laws are not the Arrhenius type. This non-Arrhenius-type
creep can be confirmed in an alternative way. In Fig. 6, for
each case, we plot log(v) vs 1/T curve at fixed current less
than the corresponding critical current, a linear behavior is
not observed, indicating really the absence of the Arrhenius
behavior.

The non-Arrhenius-type creep behaviors have been previ-
ously observed in charge-density waves® and the flux lines in
3D systems with weak pinning;'® however, the present expo-
nents are different from previous ones. Interestingly, B is
compatible with 2 for the p=0 and 0.05 and 5/3 for p=0.1
and 0.3 within standard deviations. The combination expo-
nent 36 describes the temperature dependence of the creep-
ing law, which is a crucial quantity in the scaling theory.
Although the depinning exponent is dependent on the disor-
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der strength, the combination exponent 86 has two different
values from the weak to strong disorder, similar to the ob-
servation in Ref. 18. Since the selected four values of disor-
der represent different levels of disorder, these two charac-
teristic values imply the existence of two universality classes
in the 2D JJAs in a weak external magnetic field.

We also simulate the microscopic motions of vortices. At
zero temperature, in the pure system once the external cur-
rent exceeds the critical value, all vortices start to move si-
multaneously and follow the static channels when in motion.
These channels become wider owing to thermal vibrations at
finite temperatures. When the bond disorder is introduced,
for currents slightly above the threshold value, some vortices
move while others keep motionless and the channel disap-
pears in this plastic motion. Since many dislocations are pro-
duced by the disorder, vortices move homogeneously. At fi-
nite temperatures, due to the thermal fluctuation, additional
dislocations are induced in the creeping regime, yielding
more homogeneous motion of vortices.

IV. CONCLUSIONS

We have studied the depinning and creep of vortices in
the 2D JJAs with a dilute density of magnetic flux f=1/25.
The results show that all these systems investigated exhibit a
continuous depinning transition at zero temperature, while at
finite temperatures, a non-Arrhenius creep law is found. The
critical exponents 8 and 1/6 increase as the bond disorder
goes up. Furthermore, the product of two exponents 86 has
two characteristic values, which suggest the existence of two
universality classes depending on the strength of the bond
disorder. Although a consistent picture of depinning and
creep motion of vortices has been obtained numerically, the
analytical theory for the nonlinear dynamic response in this
system remains to be further developed. The experimental
work on the depinning and creep in JJAs is called for to
check the present numerical results.
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